Letzte Aktualisierung am 06. Januar 2019.
Quelle: TU Dresden
Ein zuverlässiges Funktionieren technischer Infrastruktur-Netzwerke ist für unsere moderne, hochtechnisierte Gesellschaft unerlässlich. Kaskadierende Ausfälle, also Kettenreaktionen von Ausfällen verschiedener Infrastrukturen, sind Ursache vieler Ausfälle ganzer Netzwerke wie z.B. großen Teilen der europäischen Stromverbundnetze. Obwohl kaskadierende Ausfälle meist durch Netzwerk-weite nichtlineare Dynamik zwischen den einzelnen Ausfällen beeinflusst werden, konzentrierte sich deren Modellierung bisher vor allem auf die Analyse von Sequenzen von Ausfallereignissen einzelner Infrastrukturen – die Dynamik zwischen diesen Ereignissen blieb jedoch unberücksichtigt.
Das internationale Team von Wissenschaftlern des Center for Advancing Electronics Dresden (cfaed) an der TU Dresden und dem Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen konnte so herausfinden, dass einige Übergangsprozesse zwischen verschiedenen Zuständen des Stromnetzes auf einer Zeitskala von einigen Sekunden ablaufen. „Diese können eine entscheidende Rolle bei der Entstehung von kollektiven Reaktionen spielen, was schließlich bis zu einem „Blackout“ führen kann. Wir schlagen in unserer Studie eine Vorhersagemethode vor, um potenziell gefährdete Leitungen und Netzwerk-Komponenten bereits bei der Planung und wenn sinnvoll auch während des Betriebs von Leitungsnetzen zu identifizieren. Solche dynamischen Effekte könnten in Risiko-Abschätzungen und Systemplanungen von Netzbetreibern integriert werden. Insgesamt unterstreichen unsere Ergebnisse die Bedeutsamkeit von dynamisch induzierten Ausfällen für die Anpassungsvorgänge der nationalen Stromnetze verschiedener europäischer Länder“, sagt Prof. Marc Timme von der strategischen Professur für Netzwerk-Dynamik an der TU Dresden.
Besonders große Stromausfälle, die oft Millionen von Menschen betreffen, treten durch komplexes, und oft nicht-lokales Zusammenspiel vieler Komponenten auf. In Europa hat z.B. 2006 das gezielte Abschalten einer Leitung zum Ausfall großer Teile des Europäischen Netzes geführt und bis zu 120 Millionen Menschen betroffen. Solche ungünstigen Kettenreaktionen können sich bereits durch das Abschalten einer einzigen Leitung im Netz aufbauen. In einem fortgeschrittenen Stadium entsteht dann eine schnelle Dynamik, die u.a. auf den automatischen Abschaltvorrichtungen basiert, welche eigentlich der Sicherheit des Netzes dienen sollen. Diese schnelle Dynamik war im Fokus der Untersuchung des Wissenschaftlerteams. Jun.-Prof. Dirk Witthaut vom Forschungszentrum Jülich erklärt die Gründe: „In den letzten Jahren geht der Trend im Stromsektor immer weiter hin zu starker Vernetzung, die Länder sind sehr eng in das europäische Verbundnetz eigebunden. Da so Ausfälle irgendwo in diesem Netz jederzeit auch uns betreffen könnten, müssen wir die Ursachen verstehen. Deshalb beschäftigten uns diese Fragen: Können wir verstehen, wie diese schnellen Prozesse ablaufen? Können wir vorhersagen, welche Leitungen einen großflächigen Stromausfall provozieren können?“
Der Grundgedanke für die Sicherheitsarchitektur der Stromnetze ist folgender: Fällt irgendein Teil des Netzes aus, dann soll das Stromnetz weiterhin in der Lage sein zu funktionieren. Das Netz nimmt dann einen neuen stationären Zustand ein, um die ‚Fehlstelle‘ auszugleichen. Die Fragestellung, wie dieser stationäre Zustand aussieht, wenn das Netz genug Zeit hat, einen neuen stabilen Zustand zu finden, ist schon vielfach untersucht worden. Für die vergleichsweise kurze Zeitskala der Fehlerkaskaden in Stromnetzen jedoch leistet unsere aktuelle Untersuchung quasi Pionierarbeit“.
Die Wissenschaftler untersuchten die Fehlerkaskaden mittels einer Kombination aus Computer-Simulationen und mathematischen Analysen einfacher Netzmodelle. Anhand eines simulierten Netzes, bei dem gezielt Verbindungen unterbrochen werden, wurde der statische Ansatz mit dem neuen dynamischen Ansatz verglichen. Oft zeigt die umfassendere dynamische Sichtweise, dass das Netz komplett instabil werden kann, auch wenn der statische Ansatz noch Stabilität vorhersagt. Insgesamt werden so mehr mögliche Ausfälle entdeckt und der potentielle Umfang eines Ausfalls genauer vorhergesagt.
„Statt rein geographischer Abstände zwischen verschieden Orten betrachten wir die sogenannte ‚effektive Distanz‘, welche berücksichtigt, wie stark sich unterschiedliche Teile des Stromnetzes gegenseitig beeinflussen können. Hier ist jedoch für ein besseres Verständnis noch weitere Forschung nötig, um schließlich auch Möglichkeiten zu finden, solche Kaskaden zu stoppen“
Kommentar
Es ist erfreulich, wenn sich die Forschung mit derartigen aktuellen Problemen auseinandersetzt und an Lösungsmöglichkeiten arbeitet. Gleichzeitig wird hier auch gezeigt, dass wir das heutige System nicht mehr wirklich durchblicken bzw. beherrschen. Die systemischen Risiken und damit auch die Blackout-Gefahr sind daher mehr als real.
Trackbacks/Pingbacks